AFLOW-ML: A RESTful API for machine-learning predictions of materials properties

نویسندگان

  • Eric Gossett
  • Cormac Toher
  • Corey Oses
  • Olexandr Isayev
  • Fleur Legrain
  • Frisco Rose
  • Eva Zurek
  • Jesús Carrete
  • Natalio Mingo
  • Alexander Tropsha
  • Stefano Curtarolo
چکیده

Eric Gossett, 2 Cormac Toher, 2 Corey Oses, 2 Olexandr Isayev, Fleur Legrain, 5 Frisco Rose, 2 Eva Zurek, Jesús Carrete, Natalio Mingo, Alexander Tropsha, and Stefano Curtarolo 2, 8, ∗ Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, USA Center for Materials Genomics, Duke University, Durham, North Carolina 27708, USA Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, USA LITEN, CEA-Grenoble, 38054 Grenoble, France Universiteé Grenoble Alpes, 38000 Grenoble, France Department of Chemistry, State University of New York at Buffalo, Buffalo, New York 14260, USA Institute of Materials Chemistry, TU Wien, A-1060 Vienna, Austria Fritz-Haber-Institut der Max-Planck-Gesellschaft, 14195 Berlin-Dahlem, Germany (Dated: November 30, 2017)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Practical Python API for Querying AFLOWLIB

Conrad W. Rosenbrock Department of Physics and Astronomy, Brigham Young University, Provo, Utah 84602, USA. (Dated: October 3, 2017) Abstract Large databases such as aflowlib.org provide valuable data sources for discovering material trends through machine learning. Although a REST API and query language are available, there is a learning curve associated with the AFLUX language that acts as a ...

متن کامل

Autonomous data-driven design of inorganic materials with AFLOW

The expansion of programmatically-accessible materials data has cultivated opportunities for data-driven approaches. Highlyautomated frameworks like AFLOW not only manage the generation, storage, and dissemination of materials data, but also leverage the information for thermodynamic formability modeling, such as the prediction of phase diagrams and properties of disordered materials. In combin...

متن کامل

AFLUX: The LUX materials search API for the AFLOW data repositories

Article history: Received 29 March 2017 Accepted 29 April 2017 Automated computational materials science frameworks rapidly generate large quantities of materials data for accelerated materials design. In order to take advantage of these large databases, users should have the ability to efficiently search and extract the desired data. Therefore, we have extended the data-oriented AFLOW-reposito...

متن کامل

Protocols and Structures for Inference: A RESTful API for Machine Learning

Diversity in machine learning APIs (in both software toolkits and web services), works against realising machine learning’s full potential, making it difficult to draw on individual algorithms from different products or to compose multiple algorithms to solve complex tasks. This paper introduces the Protocols and Structures for Inference (PSI) service architecture and specification, which prese...

متن کامل

Transparent Machine Learning Algorithm Offers Useful Prediction Method for Natural Gas Density

Machine-learning algorithms aid predictions for complex systems with multiple influencing variables. However, many neural-network related algorithms behave as black boxes in terms of revealing how the prediction of each data record is performed. This drawback limits their ability to provide detailed insights concerning the workings of the underlying system, or to relate predictions to specific ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017